
EXERCISES: ENUMERATIVE COMBINATORICS

Margherita Maria Ferrari

1. In how many different ways can we partition an n-set into two parts if one part
has three elements and the other part has all the remaining elements?

Solution:
Consider an n-set X. We want to determine two disjoint subsets, A and B, of
X such that X = A ∪ B, |A| = 3 and |B| = n − 3. If we fix the elements of
A, then B turns out to be the complement of A; in other words B = X \ A.
Thus to count the number of pairs (A,B) that satisfy the above conditions, it is
equivalent to count the number of ways in which we can determine a subset of
cardinality 3 from an n-set: this value corresponds to the binomial number

(
n
3

)
.

2. There are 4 characters, two letters of the alphabet followed by two digits, which
appear in a sequence. Determine the number of sequences if:

(a) all characters can be repeated;

(b) letters cannot be repeated;

(c) no character can be repeated.

Solution:
A sequence formed by two letters followed by two digits can be represented as
a1 a2 b1 b2; where a1, a2 denote letters, while b1, b2 denote digits.

(a) If all characters can be repeated we can choose each letter in 26 ways and
each digit in 10 ways. Thus, by the multiplication principle, the number of
sequences is 26 · 26 · 10 · 10.

(b) If letters cannot be repeated, we can choose the first letter in 26 ways, while
the second one can be chosen only in 25 ways (we cannot use again the letter
corresponding to the first character). Moreover each digit can be selected
in 10 ways. Thus the number of sequences is 26 · 25 · 10 · 10.

(c) Using a similar argument to the preceding one also for digits, we obtain that
the number of sequences is 26 · 25 · 10 · 9.

3. Find the number of ways to form a four-letter sequence using the letters A,B,C,D,
E if

(a) repetitions of letters are permitted ;

(b) repetitions are not permitted ;

(c) the sequence contains the letter A but repetitions are not permitted ;

(d) the sequence contains the letter A but repetitions are permitted ;

Solution:
We can represent a four-letter sequence as a1a2a3a4, where ai ∈ {A,B,C,
D,E} for i = 1, 2, 3, 4.
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(a) Each elements ai can be any of the available five letters. Thus the number
of sequences is 54.

(b) Since we cannot repeat characters, a1 can be chosen in 5 ways, a2 in 4, a3
in 3 and a4 only in 2. Hence the number of sequences is 5 · 4 · 3 · 2.

(c) Let

A1 = {Aa2a3a4,where ai ∈ {B,C,D,E}, without repetitions}

be the set of all sequences without repetitions where A is the first character
and the remaining letters belong to the set {B,C,D,E}. In the same way
we can define A2, A3 and A4. The number of sequences that satisfy condition
(c) is

|A1 ∪ A2 ∪ A3 ∪ A4|.

Since these sets are pairwise disjoint, by the addition principle, the required
value is

|A1|+ |A2|+ |A3|+ |A4|.

We only need to compute the cardinality of these sets.
Consider A1. The cardinality of A1 coincides with the number of sequences
of length 3 formed with the letters B,C,D,E with no repetitions, that is
4 ·3 ·2. Using the same argument we obtain that |A2| = |A3| = |A4| = 4 ·3 ·2.
Thus

|A1|+ |A2|+ |A3|+ |A4| = 4 · 4 · 3 · 2.

Note that is also possible to solve the exercise in the following way. The
position of the letter A can be chosen in 4 ways. The remaining three
symbols in the word are chosen from the set {B,C,D,E}, without repeating
any letter. Thus the number of sequences is 4 · 4 · 3 · 2.

(d) We can construct the required sequences in the following way:

- fix the position of A

- select each one of the three remaining symbols from the set {A,B,C,D,E}
The first event can be done in 4 ways, while the second one in 53 ways
(each of the remaining symbols can be chosen in 5 ways). Thus, by the
multiplication principle, the required value is 4 · 53.

4. How many subsets of the set [10] contain only even integers?

Solution:
We are interested in computing the number of subsets of {1, 2, . . . , 9, 10} con-
taining only even integers; in other words we want to determine the number of
subsets of the set {2, 4, 6, 8, 10}, which turns out to be 25.

5. Find the number of solutions of x1 + x2 + · · · + xn = r, where each variable is
either 0 or 1.

Solution:
In order to have a solution of the given equation we have to assign to r variables
the value 1 and to the remaining ones the value 0. In other words, if we consider
the set {x1, x2, . . . , xn}, we have to choose a subset of cardinality r, that corre-
sponds to the variables equal to 1, while the remaining variables will be equal to
0. Such a subset can be chosen in

(
n
r

)
ways.
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6. There are 65 students in a class. Among them a total of 41 can play piano, 20
the violin, 10 the guitar, 10 both piano and violin, 7 piano and guitar, 5 violin
and guitar but only 2 can play all three instruments. How many students of the
class cannot play any of them?

Solution:
Let I be the set of students, A1 the set of students that play piano, A2 the set of
students that play violin and A3 the set of students that play guitar. We want to
compute the number of students that cannot play any of the three instruments,
in other words |A′

1 ∩ A′
2 ∩ A′

3|, where A′
i is the complement of Ai, i = 1, 2, 3. To

solve the exercise we use the principle of inclusion-exclusion: from Sylvesters’s
identity we obtain that

|A′
1 ∩ A′

2 ∩ A′
3| = |I| − s1 + s2 − s3,

where s1 =
∑
|Ai|, s2 =

∑
|Ai ∩ Aj| and s3 = |A1 ∩ A2 ∩ A3|.

In our case we get
|I| = 65,

s1 = 41 + 20 + 10 = 71,

s2 = 10 + 7 + 5 = 22,

s3 = 2;

and so
|A′

1 ∩ A′
2 ∩ A′

3| = 14.

7. How many subsets of the set [10] contain at least one odd integer?

Solution:
Let I be the set of subsets of [10] and denote

A1 = subsets that contain 1,
A2 = subsets that contain 3,
A3 = subsets that contain 5,
A4 = subsets that contain 7,
A5 = subsets that contain 9.

We want to compute |A1∪A2∪A3∪A4∪A5|. Since these subsets of I have non-
empty intersection, we can solve the exercise by using the principle of inclusion-
exclusion, in particular Da Silva’s formula:

|A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5| = s1 − s2 + s3 − s4 + s5,

where s1 =
∑
|Ai|, s2 =

∑
|Ai ∩ Aj|, . . . , s5 = |A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5|.

We begin by computing the cardinality of A1. An element of A1 is a subset of [10]
that contains 1; so it can be determined by choosing a subset of [10]\{1} and then
adding 1. Thus the number of element of A1 is equal to the number of subsets of
[10] \ {1}, which is 29. Using the same argument |A2| = |A3| = |A4| = |A5| = 29

and so s1 = 5 · 29 =
(
5
1

)
· 29.
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We now compute the value of s2. Let us start with |A1 ∩ A2|. An element of
A1 ∩ A2 is a subset of [10] that contains 1 and 3; so it can be determined by
choosing a subset of [10] \ {1, 3} and then adding 1 and 3. Thus the number of
element of A1 ∩A2 is equal to the number of subsets of [10] \ {1, 3}, which is 28.
Using the same argument it is easy to prove that every term in the sum s2 is equal
to 28. Since in the sum s2 there are

(
5
2

)
values (a term in the sum s2 is deter-

mined by choosing two subsets among A1, A2, A3, A4, A5), we get that s2 =
(
5
2

)
·28.

Repeating the same procedure for the remaining values we obtain that

s3 =

(
5

3

)
· 27,

s4 =

(
5

4

)
· 26,

s5 =

(
5

5

)
· 25 = 25.

Hence

|A1 ∪A2 ∪A3 ∪A4 ∪A5| =
(

5

1

)
· 29 −

(
5

2

)
· 28 +

(
5

3

)
· 27 −

(
5

4

)
· 26 +

(
5

5

)
· 25.

Alternatively, we could make an indirect count by observing that the number of
subsets of [10] that contain at least one odd integer can be obtained by subtracting
from the number of subsets of [10] (210), the number of subsets formed by only
even integers (25). Hence 210 − 25 is the required value.

8. A byte is a binary sequence of length 8.

(a) Find the number of bytes.

(b) Find the number of bytes that begin with 10 and end with 01.

(c) Find the number of bytes that begin with 10 but do not end with 01.

(d) Find the number of bytes that begin with 10 or end with 01.

Solution:
A byte is a binary sequence of length 8, so it can be represented as x1x2 · · ·x8,
where xi ∈ {0, 1} for i = 1, 2, . . . , 8.

(a) Each elements xi can be 0 or 1; so the number of bytes is 28.

(b) We want to find the number of bytes that begin with 10 and end with 01; so
we want to compute the number of binary sequences of type 1 0x3x4x5x6 0 1,
where xi ∈ {0, 1} for i = 3, 4, 5, 6. The number of such sequences is 24.

(c) The number of bytes that begin with 10 but do not end with 01 can be
obtained by subtracting from the number of bytes that begin with 10 (26),
the number of bytes that begin with 10 and end with 01 (24). Hence 26− 24

is the required value.
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(d) Let
A1 = set of bytes that begin with 10,

A2 = set of bytes that end with 01.

The number of bytes that begin with 10 or end with 01 is

|A1 ∪ A2|.

Since A1 and A2 have non-empty intersection, we can solve the exercise by
using the principle of inclusion-exclusion, in particular Da Silva’s formula:

|A1 ∪ A2| = s1 − s2,

where s1 =
∑
|Ai| and s2 = |A1 ∩ A2|. It is easy to see that

s1 = |A1|+ |A2| = 26 + 26 = 2 · 26

and
s2 = |A1 ∩ A2| = 24.

Hence
|A1 ∪ A2| = 2 · 26 − 24 = 27 − 24.

9. Find the number of ways a mother can distribute 9 identical sweets to her three
children so that each child gets at least 2 sweets.

Solution:
Consider three children, say A, B and C. Each one of them has to receive at
least two sweets, which means that there are 3 remaining sweets that have to be
assigned to A, B, C.
A possible assignment can be represented by putting three dots in a row, sym-
bolizing the 3 remaining sweets, and inserting two dividers in the following way:
the number of dots before the first divider correspond to sweets for A, the number
of dots between the two dividers correspond to sweets for B and the number of
dots after the second divider correspond to sweets for C.
For example, the configuration •| • |• represents the assignment in which A, B
and C get 1 sweet each (i.e. each child has a total of 3 sweets); the configuration
| • • • | is the assignment in which B gets all the remaining sweets (i.e. A and C
have a total of 2 sweets each, whereas B has a total of 5 sweets).
In other words a possible configuration is a sequence of length 5 formed by 3 dots
and 2 dividers: if we fix the positions of the dividers, the remaining elements
have to be dots. Thus we have a 5-set corresponding to the available positions
and we have to select a subset of cardinality 2 that corresponds to the positions
of the dividers: this can be done in

(
5
2

)
= 10 ways.

Note that we can also solve the exercise by listing all the possible configurations:

|| • • • | • | • • | • •| • | • • • | • || • •

•| • | • •| • •| • •|| • • • | • | • • • ||
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10. Eight people are to be seated around a large round table. Find the number of
possible seating arrangements.

Solution:
Denote the eight people as {1, 2, 3, 4, 5, 6, 7, 8}.
Starting with the empty table, we see that person number 8 can select its position
in only 1 way because the round table is empty and it can be rotated.

8

8

same arrangement

Given a possible arrangement, consider the position of person number 8 as a
“starting point” and read the positions of the remaining people starting from 8
and in counterclockwise order.

8

With this procedure we obtain an ordered sequence of length 7 formed by the
elements 1, 2, 3, 4, 5, 6, 7 that identifies the given arrangement.
For example the following arrangement is completely determined by the ordered
sequence 5 3 7 6 4 1 2.
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8

2

1

4

5

3

7

6

Moreover, given a permutation of 1, 2, 3, 4, 5, 6, 7, we obtain a possible arrange-
ment. In other words the number of possible seating arrangements of 8 people
around a round table is equal to the number of permutations of the elements
1, 2, 3, 4, 5, 6, 7, which turns out to be 7!.

11. Use the characteristic equation to find a formula for un, when the sequence (un)
is defined by

un+2 = 3un+1 + 4un, (n ≥ 0)

where u0 = 1, u1 = 3.

Solution:
The characteristic equation is x2 − 3x − 4 = 0 whose roots are −1 and 4. Thus
any general solution of the given recurrence relation is of the form un = A · 4n +
B · (−1)n, where A, B are constants to be evaluated using the two given initial
conditions. If u0 = 1, then A + B = 1. If u1 = 3, then 4A − B = 3. Solving
these two simultaneous equations in A and B we get A = 4

5
and B = 1

5
, giving

the unique solution to the problem un = 4
5
· 4n + 1

5
· (−1)n = 1

5
· {4n+1 + (−1)n}.
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